[1] |
Natanson C, Kern SJ, Lurie P, et al. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis[J]. JAMA,2008, 299: 2304–2312. doi: 10.1001/jama.299.19.jrv80007 |
[2] |
Weiss JJ. Nature of the Iron-Oxygen Bond in Oxyhaemoglobin[J]. Nature,1964, 202: 83–84. |
[3] |
Gutteridge JM. The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation[J]. Biochim Biophys Acta,1987, 917: 219–223. doi: 10.1016/0005-2760(87)90125-1 |
[4] |
Reeder BJ, Svistunenko DA, Cooper CE, et al. The radical and redox chemistry of myoglobin and hemoglobin: from in vitro studies to human pathology[J]. Antioxid Redox Sign,2004, 6: 954–966. |
[5] |
Blisard KS, Mieyal JJ. Role of NADPH and the NADPH-dependent methemoglobin reductase in the hydroxylase activity of human erythrocytes[J]. Arch Biochem Biophys,1981, 210: 762–769. doi: 10.1016/0003-9861(81)90243-5 |
[6] |
Deisseroth A, Dounce AL. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role[J]. Physiol Rev,1970, 50: 319–375. doi: 10.1152/physrev.1970.50.3.319 |
[7] |
Hwang PK, Greer J. Interaction between hemoglobin subunits in the hemoglobin. haptoglobin complex[J]. J Biol Chem,1980, 255: 3038–3041. |
[8] |
Kristiansen M, Graversen JH, Jacobsen C, et al. Identification of the haemoglobin scavenger receptor[J]. Nature,2001, 409: 198–201. doi: 10.1038/35051594 |
[9] |
Schaer DJ, Schaer CA, Buehler PW, et al. CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin[J]. Blood,2006, 107: 373–380. doi: 10.1182/blood-2005-03-1014 |
[10] |
Moestrup SK, Moller HJ. CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response[J]. Ann Med,2004, 36: 347–354. doi: 10.1080/07853890410033171 |
[11] |
Lim YK, Jenner A, Ali AB, et al. Haptoglobin reduces renal oxidative DNA and tissue damage during phenylhydrazine-induced hemolysis[J]. Kidney Int,2000, 58: 1033–1044. doi: 10.1046/j.1523-1755.2000.00261.x |
[12] |
Schaer CA, Deuel JW, Bittermann AG, et al. Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage[J]. Cell Death Differ,2013, 20: 1569–1579. doi: 10.1038/cdd.2013.113 |
[13] |
Chiancone E, Antonini E, Brunori M, et al. Kinetics of the reaction between oxygen and haemoglobin bound to haptoglobin[J]. Biochem J,1973, 133: 205–207. doi: 10.1042/bj1330205 |
[14] |
Vallelian F, Garcia-Rubio I, Puglia M, et al. Spin trapping combined with quantitative mass spectrometry defines free radical redistribution within the oxidized hemoglobin: haptoglobin complex[J]. Free Radic Biol Med,2015, 85: 259–268. doi: 10.1016/j.freeradbiomed.2015.04.023 |
[15] |
Cooper CE, Schaer DJ, Buehler PW, et al. Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine b145[J]. Antioxid Redox Signal,2013, 18: 2264–2273. doi: 10.1089/ars.2012.4547.test |
[16] |
Mollan TL, Jia Y, Banerjee S, et al. Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin[J]. Free Radic Biol Med,2014, 69: 265–277. doi: 10.1016/j.freeradbiomed.2014.01.030 |
[17] |
Svistunenko DA, Dunne J, Fryer M, et al. Comparative study of tyrosine radicals in hemoglobin and myoglobins treated with hydrogen peroxide[J]. Biophys J,2002, 83: 2845–2855. doi: 10.1016/S0006-3495(02)75293-4 |
[18] |
Svistunenko DA, Cooper CE. A new method of identifying the site of tyrosyl radicals in proteins[J]. Biophys J,2004, 87: 582–595. doi: 10.1529/biophysj.104.041046 |
[19] |
Antonini E, Brunori M Hemoglobin and myoglobin in their reactions with ligands. North-Holland Pub. Co., Amsterdam, 1971, 436 pp, |
[20] |
Bonaventura J, Schroeder WA, Fang S. Human erythrocyte catalase: an improved method of isolation and a reevaluation of reported properties[J]. Arch Biochem Biophys,1972, 150: 606–617. doi: 10.1016/0003-9861(72)90080-X |
[21] |
Antonini E. Interrelationship between Structure and Function in Hemoglobin and Myoglobin[J]. Physiol Rev,1965, 45: 123–170. doi: 10.1152/physrev.1965.45.1.123 |
[22] |
Hugo M, Turell L, Manta B, et al. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics[J]. Biochemistry,2009, 48: 9416–9426. doi: 10.1021/bi901221s |
[23] |
Nilges MJ, Matteson K, Bedford RL (2007) SIMPOW6: a software package for the simulation of ESR powder-type spectra. In: ESR Spectroscopy in Membrane Biophysics. Biological Magnetic Resonance. Vol. 27, 261-281 pp. Springer. |
[24] |
Svistunenko D (2004) Tyrosine residues in different proteins: Phenol ring rotation angle database (https://svistunenko.essex.ac.uk/lev1/tyrdb/home.shtml). |
[25] |
Baldwin JM. The structure of human carbonmonoxy haemoglobin at 2.7 Å resolution[J]. J Mol Biol,1980, 136: 103–128. doi: 10.1016/0022-2836(80)90308-3 |
[26] |
Shaanan B. Structure of human oxyhaemoglobin at 2.1 A resolution[J]. J Mol Biol,1983, 171: 31–59. doi: 10.1016/S0022-2836(83)80313-1 |
[27] |
Fermi G, Perutz MF, Shaanan B, et al. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution[J]. J Mol Biol,1984, 175: 159–174. doi: 10.1016/0022-2836(84)90472-8 |
[28] |
Liddington R, Derewenda Z, Dodson E, et al. High resolution crystal structures and comparisons of T-state deoxyhaemoglobin and two liganded T-state haemoglobins: T(alpha-oxy)haemoglobin and T(met)haemoglobin[J]. J Mol Biol,1992, 228: 551–579. doi: 10.1016/0022-2836(92)90842-8 |
[29] |
Savino C, Miele AE, Draghi F, et al. Pattern of cavities in globins: the case of human hemoglobin[J]. Biopolymers,2009, 91: 1097–1107. doi: 10.1002/bip.21201 |
[30] |
Yi J, Thomas LM, Richter-Addo GB. Structure of human R-state aquomethemoglobin at 2.0 A resolution[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun,2011, 67: 647–651. doi: 10.1107/S1744309111012528 |
[31] |
Svistunenko DA, Reeder BJ, Wilson MT, et al. Radical formation and migration in myoglobins[J]. Prog React Kinet Mech,2003, 28: 105–118. doi: 10.3184/007967403103165477 |
[32] |
McArthur KM, Davies MJ. Detection and reactions of the globin radical in haemoglobin[J]. Biochim Biophys Acta,1993, 1202: 173–181. doi: 10.1016/0167-4838(93)90002-9 |
[33] |
Svistunenko DA, Jones GA. Tyrosyl radicals in proteins: a comparison of empirical and density functional calculated EPR parameters[J]. Phys Chem Chem Phys,2009, 11: 6600–6613. doi: 10.1039/b905522c |
[34] |
Ivancich A, Mattioli TA, Un S. Effect of protein microenvironment on tyrosyl radicals. A high-field (285 GHz) EPR, resonance Raman, and hybrid density functional study[J]. J Am Chem Soc,1999, 121: 5743–5753. doi: 10.1021/ja990562m |
[35] |
Rajagopal BS, Edzuma AN, Hough MA, et al. The hydrogen-peroxide-induced radical behaviour in human cytochrome c-phospholipid complexes: implications for the enhanced pro-apoptotic activity of the G41S mutant[J]. Biochem J,2013, 456: 441–452. doi: 10.1042/BJ20130758 |
[36] |
Svistunenko DA. Reaction of haem containing proteins and enzymes with hydroperoxides: The radical view[J]. Biochim Biophys Acta,2005, 1707: 127–155. doi: 10.1016/j.bbabio.2005.01.004 |
[37] |
Thompson MK, Franzen S, Ghiladi RA, et al. Compound ES of dehaloperoxidase decays via two alternative pathways depending on the conformation of the distal histidine[J]. J Am Chem Soc,2010, 132: 17501–17510. doi: 10.1021/ja106620q |
[38] |
Svistunenko DA, Wilson MT, Cooper CE. Tryptophan or tyrosine? On the nature of the amino acid radical formed following hydrogen peroxide treatment of cytochrome c oxidase[J]. Biochim Biophys Acta,2004, 1655: 372–380. doi: 10.1016/j.bbabio.2003.06.006 |
[39] |
Hoganson CW, Babcock GT. Protein-tyrosyl radical interactions in photosystem II studied by electron spin resonance and electron nuclear double resonance spectroscopy: comparison with ribonucleotide reductase and in vitro tyrosine[J]. Biochemistry,1992, 31: 11874–11880. doi: 10.1021/bi00162a028 |
[40] |
Hoganson CW, Sahlin M, Sjöberg B-M, et al. Electron magnetic resonance of the tyrosyl radical in ribonucleotide reductase from Escherichia coli[J]. J Am Chem Soc,1996, 118: 4672–4679. doi: 10.1021/ja953979a |
[41] |
Rigby SE, Nugent JH, O'Malley PJ. The dark stable tyrosine radical of photosystem 2 studied in three species using ENDOR and EPR spectroscopies[J]. Biochemistry,1994, 33: 1734–1742. doi: 10.1021/bi00173a016 |
[42] |
Azarov I, He X, Jeffers A, et al. Rate of nitric oxide scavenging by hemoglobin bound to haptoglobin[J]. Nitric Oxide,2008, 18: 296–302. doi: 10.1016/j.niox.2008.02.006 |
[43] |
Davies MJ, Puppo A. Direct detection of a globin-derived radical in leghemoglobin treated with peroxides[J]. Biochem J,1992, 281: 197–201. doi: 10.1042/bj2810197 |
[44] |
Pipirou Z, Bottrill AR, Svistunenko DA, et al. The reactivity of heme in biological systems: autocatalytic formation of both tyrosine-heme and tryptophan-heme covalent links in a single protein architecture[J]. Biochemistry,2007, 46: 13269–13278. doi: 10.1021/bi7015316 |
[45] |
Un S, Gerez C, Elleingand E, et al. Sensitivity of tyrosyl radical g-values to changes in protein structure: a high-field EPR study of mutants of ribonucleotide reductase[J]. J Am Chem Soc,2001, 123: 3048–3054. doi: 10.1021/ja003650b |
[46] |
Allard P, Barra AL, Andersson KK, et al. Characterization of a new tyrosyl free radical in Salmonella typhimurium ribonucleotide reductase with EPR at 9.45 and 245 GHz[J]. J Am Chem Soc,1996, 118: 895–896. doi: 10.1021/ja9529192 |
[47] |
Andersen CB, Torvund-Jensen M, Nielsen MJ, et al. Structure of the haptoglobin-haemoglobin complex[J]. Nature,2012, 489: 456–459. doi: 10.1038/nature11369 |
[48] |
Stodkilde K, Torvund-Jensen M, Moestrup SK, et al. Structural basis for trypanosomal haem acquisition and susceptibility to the host innate immune system[J]. Nat Commun,2014, 5: 5487. doi: 10.1038/ncomms6487 |
[49] |
Lane-Serff H, MacGregor P, Lowe ED, et al. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor[J]. Elife,2014, 3: e05553. doi: 10.7554/eLife.05553 |