[1] Roghani A, Feldman J, Kohan SA, et al. Molecular cloning of a putative vesicular transporter for acetylcholine[J]. Proc. Natl. Acad. Sci. USA, 1994, 91: 10620–10624. doi:  10.1073/pnas.91.22.10620
[2] Song H, Ming G, Fon E, et al. Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging[J]. Neuron, 1997, 18(5): 815–26. doi:  10.1016/S0896-6273(00)80320-7
[3] Liu Y, Krantz DE, Waites C, et al. Membrane trafficking of neurotransmitter transporters in the regulation of synaptic transmission[J]. Trends Cell Biol, 1999, 9(9): 356–63. doi:  10.1016/S0962-8924(99)01605-0
[4] Tan PK, Waites C, Liu Y, et al. A leucine-based motif mediates the endocytosis of vesicular monoamine and acetylcholine transporters[J]. Journal of Biological Chemistry, 1998, 273(28): 17351–60. doi:  10.1074/jbc.273.28.17351
[5] Colgan L, Liu H, Huang SY, et al. Dileucine motif is sufficient for internalization and synaptic vesicle targeting of vesicular acetylcholine transporter[J]. Traffic, 2007, 8(5): 512–22. doi:  10.1111/j.1600-0854.2007.00555.x
[6] Barbosa J, J r., Ferreira LT, Martins-Silva C, et al. Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin-sensitive step and interaction with the AP-2 adaptor complex[J]. J Neurochem, 2002, 82(5): 1221–8.
[7] Voglmaier SM, Kam K, Yang H, et al. Distinct Endocytic Pathways Control the Rate and Extent of Synaptic Vesicle Protein Recycling[J]. Neuron, 2006, 51(1): 71–84. doi:  10.1016/j.neuron.2006.05.027
[8] Saheki Y, De Camilli P. Synaptic vesicle endocytosis[J]. Cold Spring Harb Perspect Biol, 2012, 4(9): a005645.
[9] Kwon SE, Chapman ER. Glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of SV2 and synaptophysin to recycling synaptic vesicles[J]. J Biol Chem, 2012, 287(42): 35658–68. doi:  10.1074/jbc.M112.398883
[10] Nakata T, Terada S, Hirokawa N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons[J]. J Cell Biol, 1998, 140(3): 659–74. doi:  10.1083/jcb.140.3.659
[11] Stewart RS, Teng H, Wilkinson RS. "Late" macroendosomes and acidic endosomes in vertebrate motor nerve terminals[J]. J Comp Neurol, 2012, 520(18): 4275–93. doi:  10.1002/cne.23176
[12] Kim JY, Choi BK, Choi MG, et al. Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs[J]. EMBO J, 2012, 31(9): 2144–55. doi:  10.1038/emboj.2012.57
[13] Kim MH, Hersh LB. The vesicular acetylcholine transporter interacts with clathrin-associated adaptor complexes AP-1 and AP-2[J]. J Biol Chem, 2004, 279(13): 12580–7. doi:  10.1074/jbc.M310681200
[14] Haberman A, Williamson WR, Epstein D, et al. The synaptic vesicle SNARE neuronal Synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration[J]. J Cell Biol, 2012, 196(2): 261–76. doi:  10.1083/jcb.201108088
[15] Fewou SN, Plomp JJ, Willison HJ. The pre-synaptic motor nerve terminal as a site for antibody-mediated neurotoxicity in autoimmune neuropathies and synaptopathies[J]. J Anat, 2014, 224(1): 36–44. doi:  10.1111/joa.12088
[16] Koo SJ, Markovic S, Puchkov D, et al. SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses[J]. Proc Natl Acad Sci U S A, 2011, 108(33): 13540–5. doi:  10.1073/pnas.1107067108
[17] Goh GY, Huang H, Ullman J, et al. Presynaptic regulation of quantal size: K+/H+ exchange stimulates vesicular glutamate transport[J]. Nat Neurosci, 2011, 14(10): 1285–92. doi:  10.1038/nn.2898
[18] Liu H, Liu Z, Chen C, et al. Inhibitory regulation of EGF receptor degradation by sorting nexin 5[J]. Biochemical and Biophysical Research Communications, 2006, 342(2): 537–546. doi:  10.1016/j.bbrc.2006.01.179
[19] Bonifacino JS, Hurley JH. Retromer[J]. Curr Opin Cell Biol (in eng), 2008, 20(4): 427–36. doi:  10.1016/j.ceb.2008.03.009
[20] Seet LF, Hong W. The Phox (PX) domain proteins and membrane traffic[J]. Biochim Biophys Acta, 2006, 1761(8): 878–96. doi:  10.1016/j.bbalip.2006.04.011
[21] Takamori S, Holt M, Stenius K, et al. Molecular anatomy of a trafficking organelle[J]. Cell, 2006, 127(4): 831–46. doi:  10.1016/j.cell.2006.10.030
[22] Jung N, Wienisch M, Gu M, et al. Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2[J]. J Cell Biol, 2007, 179(7): 1497–510. doi:  10.1083/jcb.200708107
[23] Palfrey HC, Artalejo CR. Vesicle recycling revisited: rapid endocytosis may be the first step[J]. Neuroscience, 1998, 83(4): 969–89. doi:  10.1016/S0306-4522(97)00453-3
[24] Svingos AL, Colago EE, Pickel VM. Vesicular acetylcholine transporter in the rat nucleus accumbens shell: subcellular distribution and association with mu-opioid receptors[J]. Synapse, 2001, 40(3): 184–92. doi:  10.1002/syn.1041
[25] Krantz DE, Waites C, Oorschot V, et al. A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles[J]. J Cell Biol, 2000, 149(2): 379–96. doi:  10.1083/jcb.149.2.379
[26] Seaman MN. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer[J]. J Cell Biol (in eng), 2004, 165(1): 111–22. doi:  10.1083/jcb.200312034
[27] McGough IJ, Cullen PJ. Recent Advances in Retromer Biology[J]. Traffic (in Eng), 2011, .
[28] Seaman MN. The retromer complex - endosomal protein recycling and beyond[J]. J Cell Sci (in Eng), 2012, .
[29] Griffin CT, Trejo J, Magnuson T. Genetic evidence for a mammalian retromer complex containing sorting nexins 1 and 2[J]. Proc Natl Acad Sci U S A (in eng), 2005, 102(42): 15173–7. doi:  10.1073/pnas.0409558102
[30] Oosawa H, Fujii T, Kawashima K. Nerve growth factor increases the synthesis and release of acetylcholine and the expression of vesicular acetylcholine transporter in primary cultured rat embryonic septal cells[J]. J Neurosci Res, 1999, 57(3): 381–7. doi:  10.1002/(SICI)1097-4547(19990801)57:3<381::AID-JNR10>3.0.CO;2-C
[31] Hall DD, Dai S, Tseng PY, et al. Competition between alpha-actinin and Ca(2)(+)-calmodulin controls surface retention of the L-type Ca(2)(+) channel Ca(V)1.2[J]. Neuron, 2013, 78(3): 483–97. doi:  10.1016/j.neuron.2013.02.032
[32] Wang W, Bouhours M, Gracheva EO, et al. ITSN-1 controls vesicle recycling at the neuromuscular junction and functions in parallel with DAB-1[J]. Traffic, 2008, 9(5): 742–54. doi:  10.1111/j.1600-0854.2008.00712.x
[33] Mohrmann R, Matthies HJ, Woodruff E, 3 rd, et al. Stoned B mediates sorting of integral synaptic vesicle proteins[J]. Neuroscience, 2008, 153(4): 1048–63. doi:  10.1016/j.neuroscience.2008.02.060
[34] De Rubeis S, Pasciuto E, Li KW, et al. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation[J]. Neuron, 2013, 79(6): 1169–82. doi:  10.1016/j.neuron.2013.06.039
[35] Poon WW, Carlos AJ, Aguilar BL, et al. beta-Amyloid (Abeta) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1[J]. J Biol Chem, 2013, 288(23): 16937–48. doi:  10.1074/jbc.M113.463711
[36] Palaniyappan L, Simmonite M, White TP, et al. Neural primacy of the salience processing system in schizophrenia[J]. Neuron, 2013, 79(4): 814–28. doi:  10.1016/j.neuron.2013.06.027
[37] Boassa D, Berlanga ML, Yang MA, et al. Mapping the subcellular distribution of alpha-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis[J]. J Neurosci (in eng), 2013, 33(6): 2605–15. doi:  10.1523/JNEUROSCI.2898-12.2013
[38] Parks WT, Frank DB, Huff C, et al. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-beta family of receptor serine-threonine kinases[J]. J Biol Chem, 2001, 276(22): 19332–9. doi:  10.1074/jbc.M100606200