• ISSN 1674-8301
  • CN 32-1810/R
Turn off MathJax
Article Contents
Meihen Sun, Xu Han, Fei Chang, Hongfei Xu, Lesley Colgan, Yong-Jian Liu. Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 Cells.[J]. The Journal of Biomedical Research.
Citation: Meihen Sun, Xu Han, Fei Chang, Hongfei Xu, Lesley Colgan, Yong-Jian Liu. Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 Cells.[J]. The Journal of Biomedical Research.

Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 Cells.

More Information
  • Corresponding author: Lesley Colgan, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA, Tel: 01-561-972-9210, E-mail: lesley.colgan@nufi.org; Yong-Jian Liu, Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing 211166, China, Tel: 86-25-86869442; E-mail: young.liu78@gmail.com
  • Accurate targeting of vesicular acetylcholine transporter (VAChT) to synaptic vesicles (SVs) is indispensable for efficient cholinergic transmission. Previous studies have suggested that the dileucine motif within the C-terminus of the transporter is sufficient for its targeting to SVs. However, the cytosolic mechanism underlying specific regulation of VAChT trafficking and targeting to SVs is still unclear. Here we use the C-terminus of VAChT as bait in a yeast-two-hybrid screen to identify sorting nexin 5 (SNX5) as its novel interacting protein. SNX5 is detected in the SVs enriched LP2 subcellular fraction of rat brain homogenate and shows strong colocalization with VAChT in both brain sections and PC12 cells. Binding assays suggest that the C-terminal domain of VAChT can interact with both BAR and PX domain of SNX5. Depletion of SNX5 enhances the degradation of VAChT and the process is mediated through the lysosomal pathway. More importantly, we find that, in PC12 cells, the depletion of SNX5 expression significantly decreases the synaptic vesicle-like vesicles (SVLVs) localization of VAChT. Therefore, the results suggest that SNX5 is a novel regulator for both stability and SV targeting of VAChT.

     

  • #These authors contributed equally to this work.
  • loading
  • [1]
    Roghani A, Feldman J, Kohan SA, et al. Molecular cloning of a putative vesicular transporter for acetylcholine[J]. Proc. Natl. Acad. Sci. USA, 1994, 91: 10620–10624. doi: 10.1073/pnas.91.22.10620
    [2]
    Song H, Ming G, Fon E, et al. Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging[J]. Neuron, 1997, 18(5): 815–26. doi: 10.1016/S0896-6273(00)80320-7
    [3]
    Liu Y, Krantz DE, Waites C, et al. Membrane trafficking of neurotransmitter transporters in the regulation of synaptic transmission[J]. Trends Cell Biol, 1999, 9(9): 356–63. doi: 10.1016/S0962-8924(99)01605-0
    [4]
    Tan PK, Waites C, Liu Y, et al. A leucine-based motif mediates the endocytosis of vesicular monoamine and acetylcholine transporters[J]. Journal of Biological Chemistry, 1998, 273(28): 17351–60. doi: 10.1074/jbc.273.28.17351
    [5]
    Colgan L, Liu H, Huang SY, et al. Dileucine motif is sufficient for internalization and synaptic vesicle targeting of vesicular acetylcholine transporter[J]. Traffic, 2007, 8(5): 512–22. doi: 10.1111/j.1600-0854.2007.00555.x
    [6]
    Barbosa J, J r., Ferreira LT, Martins-Silva C, et al. Trafficking of the vesicular acetylcholine transporter in SN56 cells: a dynamin-sensitive step and interaction with the AP-2 adaptor complex[J]. J Neurochem, 2002, 82(5): 1221–8.
    [7]
    Voglmaier SM, Kam K, Yang H, et al. Distinct Endocytic Pathways Control the Rate and Extent of Synaptic Vesicle Protein Recycling[J]. Neuron, 2006, 51(1): 71–84. doi: 10.1016/j.neuron.2006.05.027
    [8]
    Saheki Y, De Camilli P. Synaptic vesicle endocytosis[J]. Cold Spring Harb Perspect Biol, 2012, 4(9): a005645.
    [9]
    Kwon SE, Chapman ER. Glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of SV2 and synaptophysin to recycling synaptic vesicles[J]. J Biol Chem, 2012, 287(42): 35658–68. doi: 10.1074/jbc.M112.398883
    [10]
    Nakata T, Terada S, Hirokawa N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons[J]. J Cell Biol, 1998, 140(3): 659–74. doi: 10.1083/jcb.140.3.659
    [11]
    Stewart RS, Teng H, Wilkinson RS. "Late" macroendosomes and acidic endosomes in vertebrate motor nerve terminals[J]. J Comp Neurol, 2012, 520(18): 4275–93. doi: 10.1002/cne.23176
    [12]
    Kim JY, Choi BK, Choi MG, et al. Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs[J]. EMBO J, 2012, 31(9): 2144–55. doi: 10.1038/emboj.2012.57
    [13]
    Kim MH, Hersh LB. The vesicular acetylcholine transporter interacts with clathrin-associated adaptor complexes AP-1 and AP-2[J]. J Biol Chem, 2004, 279(13): 12580–7. doi: 10.1074/jbc.M310681200
    [14]
    Haberman A, Williamson WR, Epstein D, et al. The synaptic vesicle SNARE neuronal Synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration[J]. J Cell Biol, 2012, 196(2): 261–76. doi: 10.1083/jcb.201108088
    [15]
    Fewou SN, Plomp JJ, Willison HJ. The pre-synaptic motor nerve terminal as a site for antibody-mediated neurotoxicity in autoimmune neuropathies and synaptopathies[J]. J Anat, 2014, 224(1): 36–44. doi: 10.1111/joa.12088
    [16]
    Koo SJ, Markovic S, Puchkov D, et al. SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses[J]. Proc Natl Acad Sci U S A, 2011, 108(33): 13540–5. doi: 10.1073/pnas.1107067108
    [17]
    Goh GY, Huang H, Ullman J, et al. Presynaptic regulation of quantal size: K+/H+ exchange stimulates vesicular glutamate transport[J]. Nat Neurosci, 2011, 14(10): 1285–92. doi: 10.1038/nn.2898
    [18]
    Liu H, Liu Z, Chen C, et al. Inhibitory regulation of EGF receptor degradation by sorting nexin 5[J]. Biochemical and Biophysical Research Communications, 2006, 342(2): 537–546. doi: 10.1016/j.bbrc.2006.01.179
    [19]
    Bonifacino JS, Hurley JH. Retromer[J]. Curr Opin Cell Biol (in eng), 2008, 20(4): 427–36. doi: 10.1016/j.ceb.2008.03.009
    [20]
    Seet LF, Hong W. The Phox (PX) domain proteins and membrane traffic[J]. Biochim Biophys Acta, 2006, 1761(8): 878–96. doi: 10.1016/j.bbalip.2006.04.011
    [21]
    Takamori S, Holt M, Stenius K, et al. Molecular anatomy of a trafficking organelle[J]. Cell, 2006, 127(4): 831–46. doi: 10.1016/j.cell.2006.10.030
    [22]
    Jung N, Wienisch M, Gu M, et al. Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2[J]. J Cell Biol, 2007, 179(7): 1497–510. doi: 10.1083/jcb.200708107
    [23]
    Palfrey HC, Artalejo CR. Vesicle recycling revisited: rapid endocytosis may be the first step[J]. Neuroscience, 1998, 83(4): 969–89. doi: 10.1016/S0306-4522(97)00453-3
    [24]
    Svingos AL, Colago EE, Pickel VM. Vesicular acetylcholine transporter in the rat nucleus accumbens shell: subcellular distribution and association with mu-opioid receptors[J]. Synapse, 2001, 40(3): 184–92. doi: 10.1002/syn.1041
    [25]
    Krantz DE, Waites C, Oorschot V, et al. A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles[J]. J Cell Biol, 2000, 149(2): 379–96. doi: 10.1083/jcb.149.2.379
    [26]
    Seaman MN. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer[J]. J Cell Biol (in eng), 2004, 165(1): 111–22. doi: 10.1083/jcb.200312034
    [27]
    McGough IJ, Cullen PJ. Recent Advances in Retromer Biology[J]. Traffic (in Eng), 2011, .
    [28]
    Seaman MN. The retromer complex - endosomal protein recycling and beyond[J]. J Cell Sci (in Eng), 2012, .
    [29]
    Griffin CT, Trejo J, Magnuson T. Genetic evidence for a mammalian retromer complex containing sorting nexins 1 and 2[J]. Proc Natl Acad Sci U S A (in eng), 2005, 102(42): 15173–7. doi: 10.1073/pnas.0409558102
    [30]
    Oosawa H, Fujii T, Kawashima K. Nerve growth factor increases the synthesis and release of acetylcholine and the expression of vesicular acetylcholine transporter in primary cultured rat embryonic septal cells[J]. J Neurosci Res, 1999, 57(3): 381–7. doi: 10.1002/(SICI)1097-4547(19990801)57:3<381::AID-JNR10>3.0.CO;2-C
    [31]
    Hall DD, Dai S, Tseng PY, et al. Competition between alpha-actinin and Ca(2)(+)-calmodulin controls surface retention of the L-type Ca(2)(+) channel Ca(V)1.2[J]. Neuron, 2013, 78(3): 483–97. doi: 10.1016/j.neuron.2013.02.032
    [32]
    Wang W, Bouhours M, Gracheva EO, et al. ITSN-1 controls vesicle recycling at the neuromuscular junction and functions in parallel with DAB-1[J]. Traffic, 2008, 9(5): 742–54. doi: 10.1111/j.1600-0854.2008.00712.x
    [33]
    Mohrmann R, Matthies HJ, Woodruff E, 3 rd, et al. Stoned B mediates sorting of integral synaptic vesicle proteins[J]. Neuroscience, 2008, 153(4): 1048–63. doi: 10.1016/j.neuroscience.2008.02.060
    [34]
    De Rubeis S, Pasciuto E, Li KW, et al. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation[J]. Neuron, 2013, 79(6): 1169–82. doi: 10.1016/j.neuron.2013.06.039
    [35]
    Poon WW, Carlos AJ, Aguilar BL, et al. beta-Amyloid (Abeta) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal hydrolase, UCH-L1[J]. J Biol Chem, 2013, 288(23): 16937–48. doi: 10.1074/jbc.M113.463711
    [36]
    Palaniyappan L, Simmonite M, White TP, et al. Neural primacy of the salience processing system in schizophrenia[J]. Neuron, 2013, 79(4): 814–28. doi: 10.1016/j.neuron.2013.06.027
    [37]
    Boassa D, Berlanga ML, Yang MA, et al. Mapping the subcellular distribution of alpha-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis[J]. J Neurosci (in eng), 2013, 33(6): 2605–15. doi: 10.1523/JNEUROSCI.2898-12.2013
    [38]
    Parks WT, Frank DB, Huff C, et al. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-beta family of receptor serine-threonine kinases[J]. J Biol Chem, 2001, 276(22): 19332–9. doi: 10.1074/jbc.M100606200
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (2028) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return