• ISSN 1674-8301
  • CN 32-1810/R
Turn off MathJax
Article Contents
Solomon E. Owumi, Uche O. Arunsi, Moses T. Otunla, Imisioluwa O. Oluwasuji. Exposure to lead and dietary furan intake aggravates hypothalamus-pituitary-testicular axis toxicity in chronic experimental rats[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220108F
Citation: Solomon E. Owumi, Uche O. Arunsi, Moses T. Otunla, Imisioluwa O. Oluwasuji. Exposure to lead and dietary furan intake aggravates hypothalamus-pituitary-testicular axis toxicity in chronic experimental rats[J]. The Journal of Biomedical Research. doi: 10.7555/JBR.36.20220108F

Exposure to lead and dietary furan intake aggravates hypothalamus-pituitary-testicular axis toxicity in chronic experimental rats

doi: 10.7555/JBR.36.20220108F
More Information
  • Corresponding author: Solomon E. Owumi, ChangeLab, Changing Live, Room NB 302, Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State 200004, Nigeria. Tel: +234-806-951-3033. E-mail: owumisa@hotmail.com
  • Received: 2022-05-11
  • Revised: 2022-06-18
  • Accepted: 2022-08-04
  • Published: 2022-09-28
  • Lead (Pb) and furan are toxic agents, and persistent exposure to humans and animals may impair reproductive function. We therefore explored the effect of Pb and furan on male rat hypothalamic-pituitary-gonadal reproductive status, oxidative stress, inflammation, and genomic integrity. We found that co-exposure to Pb and furan reduced the activities of testicular function enzymes and endogenous antioxidant levels, total sulfhydryl group, and glutathione. Sperm abnormality, biomarkers of oxidative stress, inflammation, and p53 expression were increased in dose-dependent manner by treatment with furan and Pb. Typical rat gonad histoarchitecture features were also damaged. Convincingly, co-exposure to furan—a steroid hormone disruptor; and lead—a toxic metal common in water pipes—induced male reproductive function derangement by decreasing the antioxidant defences in rats, increasing abnormalities in spermatozoa morphology, and reducing reproductive hormone in circulation. These pathophysiological alterations, if persistent, might provide a permissive environment for potentiating reproductive dysfunction and infertility.


  • CLC number: X592; R114, Document code: A
    The authors reported no conflict of interests.
  • loading
  • [1]
    Skakkebæk NE, Lindahl-Jacobsen R, Levine H, et al. Environmental factors in declining human fertility[J]. Nat Rev Endocrinol, 2022, 18(3): 139–157. doi: 10.1038/s41574-021-00598-8
    Owumi SE, Otunla MT, Arunsi UO, et al. 3-Indolepropionic acid upturned male reproductive function by reducing oxido-inflammatory responses and apoptosis along the hypothalamic-pituitary-gonadal axis of adult rats exposed to chlorpyrifos[J]. Toxicology, 2021, 463: 152996. doi: 10.1016/j.tox.2021.152996
    Bisconti M, Simon JF, Grassi S, et al. Influence of risk factors for male infertility on sperm protein composition[J]. Int J Mol Sci, 2021, 22(23): 13164. doi: 10.3390/ijms222313164
    Calogero AE, Fiore M, Giacone F, et al. Exposure to multiple metals/metalloids and human semen quality: a cross-sectional study[J]. Ecotoxicol Environ Saf, 2021, 215: 112165. doi: 10.1016/j.ecoenv.2021.112165
    Wrzecińska M, Kowalczyk A, Cwynar P, et al. Disorders of the Reproductive Health of Cattle as a Response to Exposure to Toxic Metals[J]. Biology, 2021, 10(9): 882. doi: 10.3390/biology10090882
    Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview[J]. Environ Monit Assess, 2019, 191(7): 419. doi: 10.1007/s10661-019-7528-7
    Charkiewicz AE, Backstrand JR. Lead toxicity and pollution in Poland[J]. Int J Environ Res Public Health, 2020, 17(12): 4385. doi: 10.3390/ijerph17124385
    Advisory Committee on Childhood Lead Poisoning Prevention. Recommendations for blood lead screening of young children enrolled in Medicaid: targeting a group at high risk[J]. MMWR Recomm Rep, 2000, 49(RR-14): 1–13.
    Vorvolakos T, Arseniou S, Samakouri M. There is no safe threshold for lead exposure: α literature review[J]. Psychiatriki, 2016, 27(3): 204–214. doi: 10.22365/jpsych.2016.273.204
    Rocha A, Trujillo KA. Neurotoxicity of low-level lead exposure: history, mechanisms of action, and behavioral effects in humans and preclinical models[J]. Neurotoxicology, 2019, 73: 58–80. doi: 10.1016/j.neuro.2019.02.021
    Kumar S. Occupational and environmental exposure to lead and reproductive health impairment: an overview[J]. Indian J Occup Environ Med, 2018, 22(3): 128–137.
    Abdel-Emam RA, Ahmed EA. Ameliorative effect of L-carnitine on chronic lead-induced reproductive toxicity in male rats[J]. Vet Med Sci, 2021, 7(4): 1426–1435. doi: 10.1002/vms3.473
    Seok YJ, Her JY, Kim YG, et al. Furan in thermally processed foods - a review[J]. Toxicol Res, 2015, 31(3): 241–253. doi: 10.5487/TR.2015.31.3.241
    European Food Safety Authority. Update on furan levels in food from monitoring years 2004–2010 and exposure assessment[J]. EFSA J, 2011, 9(9): 2347. doi: 10.2903/j.efsa.2011.2347
    EFSA Panel on Contaminants in the Food Chain, Knutsen HK, Alexander J, et al. Risks for public health related to the presence of furan and methylfurans in food[J]. EFSA J, 2017, 15(10): e05005. doi: 10.2903/j.efsa.2017.5005
    Faul F, Erdfelder E, Lang AG, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences[J]. Behav Res Methods, 2007, 39(2): 175–191. doi: 10.3758/BF03193146
    Owumi SE, Adedara IA, Farombi EO, et al. Protocatechuic acid modulates reproductive dysfunction linked to furan exposure in rats[J]. Toxicology, 2020, 442: 152556. doi: 10.1016/j.tox.2020.152556
    Kataba A, Botha TL, Nakayama SMM, et al. Environmentally relevant lead (Pb) water concentration induce toxicity in zebrafish (Danio rerio) larvae[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2022, 252: 109215. doi: 10.1016/j.cbpc.2021.109215
    Cressey D. Best way to kill lab animals sought[J]. Nature, 2013, 500(7461): 130–131. doi: 10.1038/500130a
    Zemjanis R. Collection and evaluation of semen[M]//Zemjanis R. Diagnostic and Therapeutic Techniques in Animal Reproduction. 2nd ed. Baltimore: Williams & Wilkins, 1970.
    WHO. WHO laboratory manual for the examination and processing of human semen[R]. Geneva: WHO, 2021.
    Wells ME, Awa OA. New technique for assessing Acrosomal characteristics of spermatozoa[J]. J Dairy Sci, 1970, 53(2): 227–232. doi: 10.3168/jds.S0022-0302(70)86184-7
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1–2): 248–254. doi: 10.1006/abio.1976.9999
    Malymy M, Horecker BL. Alkaline phosphatase[M]//Willis AW. Methods in Enzymology. New York: Academic Press, 1966: 639–642.
    Vanha‐Perttula T, Nikkanen V. Acid phosphatases of the rat testis in experimental conditions[J]. Eur J Endocrinol, 1973, 72(2): 376–390. doi: 10.1530/acta.0.0720376
    Wolf BHM, Weening RS, Schutgens RBH, et al. Detection of glucose-6-phosphate dehydrogenase deficiency in erythrocytes: a spectrophotometric assay and a fluorescent spot test compared with a cytochemical method[J]. Clin Chim Acta, 1987, 168(2): 129–136. doi: 10.1016/0009-8981(87)90281-6
    Vassault A. Lactate dehydrogenase. UV-method with pyruvate and NADH[M]//Bergmeyer HU. Methods of Enzymatic Analysis. 3rd ed. New York: Plenum, 1993: 118–125.
    Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase[J]. J Biol Chem, 1972, 247(10): 3170–3175. doi: 10.1016/S0021-9258(19)45228-9
    Ellman GL. Tissue sulfhydryl groups[J]. Arch Biochem Biophys, 1959, 82(1): 70–77. doi: 10.1016/0003-9861(59)90090-6
    Clairborne A. Catalase activity[M]. Boca Raton: CRC Press, 1995: 283–284.
    Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation[J]. J Biol Chem, 1974, 249(22): 7130–7139. doi: 10.1016/S0021-9258(19)42083-8
    Rotruck JT, Pope AL, Ganther HE, et al. Selenium: biochemical role as a component of glutathione peroxidase[J]. Science, 1973, 179(4073): 588–590. doi: 10.1126/science.179.4073.588
    Jollow DJ, Mitchell JR, Zampaglione N, et al. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite[J]. Pharmacology, 1974, 11(3): 151–169. doi: 10.1159/000136485
    Bergmeyer HI, Gawehn K. Methods of enzymatic analysis[M]. 2nd ed. Amsterdam: Elsevier, 1974: 521–522.
    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by Thiobarbituric acid reaction[J]. Anal Biochem, 1979, 95(2): 351–358. doi: 10.1016/0003-2697(79)90738-3
    Owumi SE, Dim UJ. Manganese suppresses oxidative stress, inflammation and caspase-3 activation in rats exposed to chlorpyrifos[J]. Toxicol Rep, 2019, 6: 202–209. doi: 10.1016/j.toxrep.2019.02.007
    Green LC, Wagner DA, Glogowski J, et al. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids[J]. Anal Biochem, 1982, 126(1): 131–138. doi: 10.1016/0003-2697(82)90118-X
    Granell S, Gironella M, Bulbena O, et al. Heparin mobilizes xanthine oxidase and induces lung inflammation in acute pancreatitis[J]. Crit Care Med, 2003, 31(2): 525–530. doi: 10.1097/01.CCM.0000049948.64660.06
    Bancroft JD, Gamble M. Theory and practice of histological techniques[M]. 6th ed. Amsterdam: Elsevier, 2007.
    Owumi SE, Irozuru CE, Arunsi UO, et al. Caffeic acid mitigates aflatoxin B1-mediated toxicity in the male rat reproductive system by modulating inflammatory and apoptotic responses, testicular function, and the redox-regulatory systems[J]. J Food Biochem, 2022, 46(5): e14090. doi: 10.1111/jfbc.14090
    Teo CH, Soga T, Parhar I. Lithium chloride enhances serotonin induced calcium activity in EGFP-GnIH neurons[J]. Sci Rep, 2020, 10(1): 13876. doi: 10.1038/s41598-020-70710-x
    Parhar IS, Ogawa S, Ubuka T. Reproductive neuroendocrine pathways of social behavior[J]. Front Endocrinol, 2016, 7: 28. doi: 10.3389/fendo.2016.00028
    Peruquetti RL, Taboga SR, Azeredo-Oliveira MT. Expression of acid phosphatase in the seminiferous epithelium of vertebrates[J]. Genet Mol Res, 2010, 9(2): 620–628. doi: 10.4238/vol9-2gmr730
    Gurel H, Baspinar N, Akalin PP, et al. Erythrocyte and spermatozoa glucose-6-phosphate dehydrogenase activity in merino rams: an experimental study[J]. Int J Reprod Biomed, 2018, 16(6): 373–378. doi: 10.29252/ijrm.16.6.373
    Alibawi FNAA, Al-Morshidy SY, Alhuweizi AG. The alkaline phosphatase levels in the seminal plasma and sperms of sub-fertile patients and Normospermic men[C]//International Conference on Applied Life Sciences. ISALS, 2012: 217–222.
    Owumi SE, Anaikor RA, Arunsi UO, et al. Chlorogenic acid co-administration abates tamoxifen-mediated reproductive toxicities in male rats: An experimental approach[J]. J Food Biochem, 2021, 45(2): e13615. doi: 10.1111/jfbc.13615
    Bidanchi RM, Lalrindika L, Khushboo M, et al. Antioxidative, anti-inflammatory and anti-apoptotic action of Ellagic acid against lead acetate induced testicular and hepato-renal oxidative damages and pathophysiological changes in male Long Evans rats[J]. Environ Pollut, 2022, 302: 119048. doi: 10.1016/j.envpol.2022.119048
    Yuan Y, Wang Z, Nan B, et al. Salidroside alleviates liver inflammation in furan-induced mice by regulating oxidative stress and endoplasmic reticulum stress[J]. Toxicology, 2021, 461: 152905. doi: 10.1016/j.tox.2021.152905
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (62) PDF downloads(7) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint